植物研究 ›› 2025, Vol. 45 ›› Issue (4): 479-490.doi: 10.7525/j.issn.1673-5102.2025.04.002
收稿日期:
2024-11-24
出版日期:
2025-07-20
发布日期:
2025-07-25
通讯作者:
薛永常
E-mail:xueych@dlpu.edu.cn
作者简介:
薛永常(1966—),男,教授,主要从事植物生理学研究。
基金资助:
Yongchang XUE(), Hexian WANG, Di ZHAO, Jing GUO, Ao LI
Received:
2024-11-24
Online:
2025-07-20
Published:
2025-07-25
Contact:
Yongchang XUE
E-mail:xueych@dlpu.edu.cn
摘要:
萜类化合物作为关键的次生代谢产物,参与植物在逆境胁迫下的抗氧化、信号传递及气孔运动等生理过程,在植物逆境响应中扮演着重要角色。它们不仅可以直接参与植物的防御机制,还能够作为信号分子调节植物间的相互作用,影响植物群体的适应性和稳定性。由于广泛的生物活性,萜类化合物在食品、医药和化妆品等行业中得到了广泛应用。随着合成生物技术的发展,萜类化合物研究将变得更加多样化且充满挑战,应用前景也将更加广阔。该文综合分析了植物中萜类化合物的生物合成途径及其生理生态功能,旨在深化对植物逆境适应策略的理解,为植物抗逆性研究提供参考,并为可持续农业和医药健康产业发展提供新途径。
中图分类号:
薛永常, 王贺贤, 赵娣, 郭静, 李澳. 植物萜类化合物生物合成及其功能研究进展[J]. 植物研究, 2025, 45(4): 479-490.
Yongchang XUE, Hexian WANG, Di ZHAO, Jing GUO, Ao LI. Research Progress on the Biosynthesis and Functions of Plant Terpenoids[J]. Bulletin of Botanical Research, 2025, 45(4): 479-490.
表1
植物萜类化合物生物合成调控模式及其诱导因子
调控模式 Regulation modes | 功能 Functions | 诱导因子 Inducing factors |
---|---|---|
转录调控 Transcriptional regulation | 转录因子结合在萜类合成相关基因上游序列,激活或抑制其转录 Transcription factors bind to the upstream sequences of terpenoid biosynthesis-related genes,activating or inhibiting their transcription | AP2/ERF[ |
bHLH[ | ||
MYB[ | ||
MYC[ | ||
NAC[ | ||
WRKY[ | ||
bZIP[ | ||
激素诱导 Phytohormones induction | 诱导萜类合成相关转录因子的表达 Induce the expression of transcription factors related to terpenoid synthesis | 乙烯[ Ethylene |
茉莉酸[ Jasmonic acid | ||
生态因子调节 Ecological factors regulation | 适应气候等生态环境的变化 Adapt to changes in climate and other ecological environments | 光照[ Illumination |
季节[ Season | ||
土壤[ Soil | ||
反馈抑制 Feedback inhibition | 调节萜类代谢关键酶的活性 Regulate the activity of key enzymes in terpenoid metabolism | IPP[ |
DMAPP[ |
表2
植物萜类化合物的生理功能
萜类化合物 Terpenoids | 来源 Source | 功能 Functions |
---|---|---|
诺卡酮[ Nootkatone | 阿拉斯加黄雪松 Cupressus nootkatensis | 逆转GABA对果蝇中枢神经系统的阻断作用,引起神经持续兴奋,导致昆虫瘫痪或死亡 Reversing the blocking effect of GABA on the central nervous system of fruit flies,causing persistent neural excitation,leading to paralysis or death of the insects |
麝香草酚[ Thymol | 墨西哥牛至 Lippia origanoides | 抑制线粒体酶和乙酰胆碱酯酶活性,干扰线粒体电子传递,阻断神经冲动传导 Inhibiting mitochondrial enzyme and acetylcholinesterase activities,interfering with mitochondrial electron transmission,blocking nerve impulse conduction |
香芹酚[ Carvacrol | 墨西哥牛至 Lippia origanoides | 抑制线粒体酶和乙酰胆碱酯酶活性,干扰线粒体电子传递,阻断神经冲动传导 Inhibiting mitochondrial enzyme and acetylcholinesterase activities,interfering with mitochondrial electron transmission, blocking nerve impulse conduction |
棉酚[ Gossypol | 棉花 Gossypium spp. | 醛基团能够与蛋白质的氨基酸残基形成席夫碱式交联结构,抑制其活性,对植食性昆虫产生毒性 The aldehyde group can form a Schiff base cross-linked structure with the amino acid residues of the protein,inhibit its activity,and produce toxicity to herbivorous insects |
杜松烯[ Cadinenes | 紫茎泽兰 Eupatorium adenophorum | 对甜菜夜蛾表现出强效的拒食活性,并且可以抑制邻近植物的种子萌发和幼苗生长 Showing strong antifeedant activity against Spodoptera exigua and inhibiting seed germination and seedling growth of neighboring plants |
反式-β-罗勒烯[ (E)-β-Ocimene | 金甲豆 Phaseolus lunatus | 引诱捕食性天敌智利小植绥螨取食二斑叶螨 Attracting the predatory natural enemy,the Phytoseiulus persimilis,to feed on the Tetranychus urticae |
齐墩果酸[ Oleanolic acid | 木樨榄 Olea europaea | 破坏病原菌中富含心磷脂的结构,与磷脂酰甘油相互作用,降低细菌膜结构流动性 Destroying cardiolipin-rich structures in pathogenic bacteria and interacting with phosphatidylglycerol to reduce bacterial membrane fluidity |
乌索酸[ Ursolic acid | 熊果 Arctostaphylos uva-ursi | 破坏病原菌中富含心磷脂的结构,与磷脂酰甘油相互作用,降低细菌膜结构流动性 Destroying cardiolipin-rich structures in pathogenic bacteria and interacting with phosphatidylglycerol to reduce bacterial membrane fluidity |
蒿属内酯[ Artemivestinolide | 毛莲蒿 Artemisia vestita | α-亚甲基-γ-丁内酯环的双键与亲核基团发生迈克尔型反应,改变活性位点结构,展现不同的生物效应 The double bond contained in the α-methylene-γ-butyrolactone ring can react with nucleophilic groups in Michael reaction,altering the structure of active sites and exhibiting various biological effects |
温郁金宁Q[ Wenyujinin Q | 温郁金 Curcuma wenyujin | 对芸苔生链格孢等9种病原真菌表现出强效的抑制活性 Showing strong inhibitory activity against nine pathogenic fungi such as Alternaria brassicicola |
青蒿素[ Artemisinin | 黄花蒿 Artemisia annua | 广泛用于疟疾治疗 Widely used in the treatment of malaria |
紫杉醇[ Paclitaxel | 短叶红豆杉 Taxus brevifolia | 用于乳腺癌、卵巢癌和肺癌等多种癌症的治疗 Used in the treatment of various types of cancer,including breast cancer, ovarian cancer,and lung cancer |
刺囊酸[ Echinocystic acid | 蒙自合欢 Albizia bracteata | 广谱抑制埃博拉病毒、马尔堡病毒、流感A病毒及HIV等病毒的感染 Broad-spectrum inhibition of infections by Ebola virus, Marburg virus,influenza A virus,and HIV,among other viruses |
白桦脂酸[ Betulinic acid | 鼠李科 Rhamnaceae | 广谱抑制埃博拉病毒、马尔堡病毒、流感A病毒及HIV等病毒的感染 Broad-spectrum inhibition of infections by Ebola virus,Marburg virus, influenza A virus,and HIV,among other viruses |
脱落酸[ Abscisic acid | 植物激素 Phytohormone | 逆境响应激素,盐胁迫下促进气孔闭合,增强抗氧化酶的表达和活性 Stress-responsive hormone that promotes stomatal closure under salt stress and enhances the expression and activity of antioxidant enzymes |
类胡萝卜素[ Carotenoids | 植物色素 Plant pigments | 保护叶绿素不受强光的过度伤害 Protecting chlorophyll from excessive damage by strong light |
甲基赤藓 糖醇环二磷酸[ Methylerythritol cyclodiphosphate | 甲基赤藓糖醇磷酸途径 Methylerythritol phosphate pathway | 触发氧化应激反应 Triggering oxidative stress response |
β-环柠檬醛[ β-Cyclocitral | 植物色素 Plant pigments | 作为逆行信号激活应激响应核基因的表达 Acting as a retrograde signal to activate the expression of stress-responsive nuclear genes |
[1] | ERB M, KLIEBENSTEIN D J.Plant secondary metabolites as defenses,regulators,and primary metabolites:the blurred functional trichotomy[J].Plant Physiology,2020,184(1):39-52. |
[2] | GIRON-CALVA P S, LI T, BLANDE J D.Volatile-mediated interactions between cabbage plants in the field and the impact of ozone pollution[J].Journal of Chemical Ecology,2017,43(4):339-350. |
[3] | 张涛,邓思,陈艳红,等.虾青素和β-胡萝卜素的抗氧化活性及其协同作用研究[J].食品与发酵工业,2021,47(9):8-15. |
ZHANG T, DENG S, CHEN Y H,et al.Antioxidant activity and synergistic effect of astaxanthin and β-carotene[J].Food and Fermentation Industries,2021,47(9):8-15. | |
[4] | 叶家其,张毓婷,傅鹰,等.毛竹茎秆伸长过程中赤霉素生物合成、降解和信号转导关键基因的鉴定及表达分析[J].生物工程学报,2019,35(4):647-666. |
YE J Q, ZHANG Y T, FU Y,et al.Genome-wide identification and expression analysis of gibberellin biosynthesis,metabolism and signaling family genes in Phyllostachys edulis [J].Chinese Journal of Biotechnology,2019,35(4):647-666. | |
[5] | NAMBARA E, MARION-POLL A.Abscisic acid biosynthesis and catabolism[J].Annual Review of Plant Biology,2005,56:165-185. |
[6] | BAJGUZ A, CHMUR M, GRUSZKA D.Comprehensive overview of the brassinosteroid biosynthesis pathways:substrates,products,inhibitors,and connections[J].Frontiers in Plant Science,2020,11:1034. |
[7] | PATEL D K.Biological activity of ascaridole through interference of binding sites of topoisomerase I,topoisomerase II,acetylcholinesterase,SOD and catalase for the treatment of Alzheimer’s disorders[J].Value in Health Regional Issues,2020,22:S79. |
[8] | SAKIPOVA Z, WONG N S H, BEKEZHANOVA T,et al.Quantification of santonin in eight species of Artemisia from Kazakhstan by means of HPLC-UV:method development and validation[J].PLoS One,2017,12(3):e0173714. |
[9] | LIN S P, LI W J, WINTERS A,et al.Artemisinin prevents glutamate-induced neuronal cell death via Akt pathway activation[J].Frontiers in Cellular Neuroscience,2018,12:108. |
[10] | GUPTA S, MISHRA K P, GANJU L.Broad-spectrum antiviral properties of andrographolide[J].Archives of Virology,2017,162(3):611-623. |
[11] | FULORIA N K, RAHEJA R K, SHAH K H,et al.Biological activities of meroterpenoids isolated from different sources[J].Frontiers in Pharmacology,2022,13:830103. |
[12] | PENG X R, LUO R C, SU H G,et al.(±)-Spiroganoapplanin A,a complex polycyclic meroterpenoid dimer from Ganoderma applanatum displaying potential against Alzheimer’s disease[J].Organic Chemistry Frontiers,2022,9(11):3093-3101. |
[13] | SUN Z L, WU M Y, ZHONG B Y,et al.Target discovery of dhilirane-type meroterpenoids by biosynthesis guidance and tailoring enzyme catalysis[J].Journal of the American Chemical Society,2024,146(44):30242-30251. |
[14] | MCCASKILL D, CROTEAU R.Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint(Mentha×piperita) rely exclusively on plastid-derived isopentenyl diphosphate[J].Planta,1995,197:49-56. |
[15] | SONG S Y, JIN R T, CHEN Y F,et al.The functional evolution of architecturally different plant geranyl diphosphate synthases from geranylgeranyl diphosphate synthase[J].The Plant Cell,2023,35(6):2293-2315. |
[16] | MA Y H, CHEN Q W, WANG Y Y,et al.Heteromerization of short-chain trans-prenyltransferase controls precursor allocation within a plastidial terpenoid network[J].Journal of Integrative Plant Biology,2023,65(5):1170-1182. |
[17] | 杨国霞,蒋宝鑫,何凡,等.杜鹃花TPS基因家族鉴定及与萜类物质代谢的关系分析[J].生物工程学报,2022,38(10):3740-3756. |
YANG G X, JIANG B X, HE F,et al.Identification of terpene synthase gene family members in Rhododendron and its relationship with terpenoid metabolism[J].Chinese Journal of Biotechnology,2022,38(10):3740-3756. | |
[18] | 张玉婷,李伟国,梁冬梅,等.P450s在萜类合成方面的合成生物学研究进展[J].中国生物工程杂志,2020,40(8):84-96. |
ZHANG Y T, LI W G, LIANG D M,et al.Research progress in synthetic biology of P450s in terpenoid synthesis[J].China Biotechnology,2020,40(8):84-96. | |
[19] | LEE S, BADIEYAN S, BEVAN D R,et al.Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis [J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(49):21205-21210. |
[20] | CHRISTIANSON D W.Structural and chemical biology of terpenoid cyclases[J].Chemical Reviews,2017,117(17):11570-11648. |
[21] | WANG Z Y, YANG Q, HE J Y,et al.Cytochrome P450 mediated cyclization in eunicellane derived diterpenoid biosynthesis[J].Angewandte Chemie International Edition,2023,62(45):e202312490. |
[22] | RODRÍGUEZ-CONCEPCIÓN M.Early steps in isoprenoid biosynthesis:multilevel regulation of the supply of common precursors in plant cells[J].Phytochemistry Reviews,2006,5(1):1-15. |
[23] | 张甜甜,郑炳松,袁虎威,等.植物挥发性有机物合成与代谢途径及其释放与感知调控机制的研究进展[J].天然产物研究与开发,2023,35(6):1068-1080. |
ZHANG T T, ZHENG B S, YUAN H W,et al.Research progress on synthetic and metabolic pathways of plant volatile organic compounds and their release and sensing regulatory mechanisms[J].Natural Product Research and Development,2023,35(6):1068-1080. | |
[24] | SINGH S, CHHATWAL H, PANDEY A.Deciphering the complexity of terpenoid biosynthesis and its multi-level regulatory mechanism in plants[J].Journal of Plant Growth Regulation,2024,43(10):3320-3336. |
[25] | LIN J L, CHEN L X, WU W K,et al.Single-cell RNA sequencing reveals a hierarchical transcriptional regulatory network of terpenoid biosynthesis in cotton secretory glandular cells[J].Molecular Plant,2023,16(12):1990-2003. |
[26] | 董燕梅,张文颖,凌正一,等.转录因子调控植物萜类化合物生物合成研究进展[J].植物学报,2020,55(3):340-350. |
DONG Y M, ZHANG W Y, LING Z Y,et al.Advances in transcription factors regulating plant terpenoids biosynthesis[J].Chinese Bulletin of Botany,2020,55(3):340-350. | |
[27] | WEI J C, YANG Y, PENG Y,et al.Biosynthesis and the transcriptional regulation of terpenoids in tea plants (Camellia sinensis)[J].International Journal of Molecular Sciences,2023,24(8):6937. |
[28] | YANG Z Z, LI Y Q, GAO F Z,et al.MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana [J].Journal of Experimental Botany,2020,71(14):4140-4158. |
[29] | OKADA A, OKADA K, MIYAMOTO K,et al.OsTGAP1,a bZIP transcription factor,coordinately regulates the inductive production of diterpenoid phytoalexins in rice[J].Journal of Biological Chemistry,2009,284(39):26510-26518. |
[30] | MIYAMOTO K, NISHIZAWA Y, MINAMI E,et al.Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells[J].Journal of Plant Physiology,2015,173:19-27. |
[31] | 刘晓洲,范燕萍,余让才,等.乙烯和1-MCP对白姜花萜类香气及相关基因表达的影响[J].华南农业大学学报,2018,39(4):68-72. |
LIU X Z, FAN Y P, YU R C,et al.Effect of ethylene and 1-MCP on the terpenoid fragrance of Hedychium coronarium and the expressions of related genes[J].Journal of South China Agricultural University,2018,39(4):68-72. | |
[32] | RAHIMI S, KIM Y J, SUKWEENADHI J,et al. PgLOX6 encoding a lipoxygenase contributes to jasmonic acid biosynthesis and ginsenoside production in Panax ginseng [J].Journal of Experimental Botany,2016,67(21):6007-6019. |
[33] | POKHILKO A, BOU-TORRENT J, PULIDO P,et al.Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis [J].New Phytologist,2015,206(3):1075-1085. |
[34] | SAADAT N P, VAN AALST M, BRAND A,et al.Shifts in carbon partitioning by photosynthetic activity increase terpenoid synthesis in glandular trichomes[J].The Plant Journal,2023,115(6):1716-1728. |
[35] | HELMIG D, DALY R W, MILFORD J,et al.Seasonal trends of biogenic terpene emissions[J].Chemosphere,2013,93(1):35-46. |
[36] | LLUSIÀ J, PEÑUELAS J.Seasonal patterns of terpene content and emission from seven mediterranean woody species in field conditions[J].American Journal of Botany,2000,87(1):133-140. |
[37] | ORMEÑO E, FERNANDEZ C.Effect of soil nutrient on production and diversity of volatile terpenoids from plants[J].Current Bioactive Compounds,2012,8(1):71-79. |
[38] | ORMEÑO E, BALDY V, BALLINI C,et al.Production and diversity of volatile terpenes from plants on calcareous and siliceous soils:effect of soil nutrients[J].Journal of Chemical Ecology,2008,34(9):1219-1229. |
[39] | BANERJEE A, WU Y, BANERJEE R,et al.Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway[J].Journal of Biological Chemistry,2013,288(23):16926-16936. |
[40] | YE J, ZHANG L L, ZHANG X,et al.Plant defense networks against insect-borne pathogens[J].Trends in Plant Science,2021,26(3):272-287. |
[41] | NORRIS E J, CHEN R, LI Z L,et al.Mode of action and toxicological effects of the sesquiterpenoid,nootkatone,in insects[J].Pesticide Biochemistry and Physiology,2022,183:105085. |
[42] | DUQUE J E, URBINA D L, VESGA L C,et al.Insecticidal activity of essential oils from American native plants against Aedes aegypti (Diptera:Culicidae):an introduction to their possible mechanism of action[J].Scientific Reports,2023,13(1):2989. |
[43] | KREMPL C, HEIDEL-FISCHER H M, JIMÉNEZ-ALEMÁN G H,et al.Gossypol toxicity and detoxification in Helicoverpa armigera and Heliothis virescens [J].Insect Biochemistry and Molecular Biology,2016,78:69-77. |
[44] | LIU Y, LUO S H, HUA J,et al.Characterization of defensive cadinenes and a novel sesquiterpene synthase responsible for their biosynthesis from the invasive Eupatorium adenophorum [J].New Phytologist,2021,229(3):1740-1754. |
[45] | GUO J F, QI J F, HE K L,et al.The Asian corn borer Ostrinia furnacalis feeding increases the direct and indirect defence of mid-whorl stage commercial maize in the field[J].Plant Biotechnology Journal,2019,17(1):88-102. |
[46] | ZHANG P J, ZHENG S J, VAN LOON J J A,et al.Whiteflies interfere with indirect plant defense against spider mites in Lima bean[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(50):21202-21207. |
[47] | LI F Q, LI W, LIN Y J,et al.Expression of Lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest[J].Plant,Cell & Environment,2018,41(1):111-120. |
[48] | BRONIATOWSKI M, FLASIŃSKI M, ZIĘBA K,et al.Interactions of pentacyclic triterpene acids with cardiolipins and related phosphatidylglycerols in model systems[J].Biochimica et Biophysica Acta,2014,1838(10):2530-2538. |
[49] | DING Y H, WANG H T, SHI S,et al.Sesquiterpenoids from Artemisia vestita and their antifeedant and antifungal activities[J].Molecules,2019,24(20):3671. |
[50] | HUANG H F, ZHENG C J, CHEN G Y,et al.Sesquiterpenoids from Curcuma wenyujin dreg and their biological activities[J].Chinese Chemical Letters,2016,27(10):1612-1616. |
[51] | KITSON R R A, MILLEMAGGI A, TAYLOR R J K.The renaissance of α-methylene-γ-butyrolactones:new synthetic approaches[J].Angewandte Chemie International Edition,2009,48(50):9426-9451. |
[52] | KLAYMAN D L.Qinghaosu (artemisinin):an antimalarial drug from China[J].Science,1985,228(4703):1049-1055. |
[53] | SCRIBANO C M, WAN J, ESBONA K,et al.Chromosomal instability sensitizes patient breast tumors to multipolar divisions induced by paclitaxel[J].Science Translational Medicine,2021,13(610):eabd4811. |
[54] | SI L L, MENG K, TIAN Z Y,et al.Triterpenoids manipulate a broad range of virus-host fusion via wrapping the HR2 domain prevalent in viral envelopes[J].Science Advances,2018,4(11):eaau8408. |
[55] | HSU P K, DUBEAUX G, TAKAHASHI Y,et al.Signaling mechanisms in abscisic acid-mediated stomatal closure[J].The Plant Journal,2021,105(2):307-321. |
[56] | 刘鸿睿,闫宝旭,赵艺,等.参与气孔脱落酸信号转导的离子通道与转运蛋白研究进展[J].植物科学学报,2024,42(4):543-554. |
LIU H R, YAN B X, ZHAO Y,et al.Advances in studies of ion channels and transporters involved in stomatal ABA signaling[J].Plant Science Journal,2024,42(4):543-554. | |
[57] | AHMAD S, BELWAL V, PUNIA S S,et al.Role of plant secondary metabolites and phytohormones in drought tolerance:a review[J].Gesunde Pflanzen,2023,75(4):729-746. |
[58] | ZHU J K.Abiotic stress signaling and responses in plants[J].Cell,2016,167(2):313-324. |
[59] | YOUNG A J.The photoprotective role of carotenoids in higher plants[J].Physiologia Plantarum,1991,83(4):702-708. |
[60] | HECHT S, EISENREICH W, ADAM P,et al.Studies on the nonmevalonate pathway to terpenes:the role of the GcpE (IspG) protein[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(26):14837-14842. |
[61] | BANERJEE A, SHARKEY T D.Methylerythritol 4-phosphate (MEP) pathway metabolic regulation[J].Natural Product Reports,2014,31(8):1043-1055. |
[62] | PEREZ-GIL J, BEHRENDORFF J, DOUW A,et al.The methylerythritol phosphate pathway as an oxidative stress sense and response system[J].Nature Communications,2024,15(1):5303. |
[63] | MITRA S, ESTRADA-TEJEDOR R, VOLKE D C,et al.Negative regulation of plastidial isoprenoid pathway by herbivore-induced β-cyclocitral in Arabidopsis thaliana [J].Proceedings of the National Academy of Sciences of the United States of America,2021,118(10):e2008747118. |
[64] | 祝俊明.一种植物源萜类化合物在抗皱化妆品中的应用:202011597425.7[P].2021-04-09[2021-11-20]. |
ZHU J M.Application of a plant-derived terpenoid compound in anti-wrinkle cosmetics:202011597425.7[P]. 2021-04-09[2021-11-20]. | |
[65] | SÁNCHEZ-QUESADA C, LÓPEZ-BIEDMA A, TOLEDO E,et al.Squalene stimulates a key innate immune cell to foster wound healing and tissue repair[J].Evidence-Based Complementary and Alternative Medicine,2018:9473094. |
[66] | JIANG S, LI H Q, ZHANG L W Y,et al.Generic Diagramming Platform (GDP):a comprehensive database of high-quality biomedical graphics[J].Nucleic Acids Research,2025,53(D1):D1670-D1676. |
[67] | HEIL M, SILVA BUENO J C.Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(13):5467-5472. |
[68] | HUANG W, GFELLER V,ERB M.Root volatiles in plant-plant interactions II:root volatiles alter root chemistry and plant-herbivore interactions of neighbouring plants[J].Plant,Cell & Environment,2019,42(6):1964-1973. |
[69] | 彭少麟,南蓬,钟扬.高等植物中的萜类化合物及其在生态系统中的作用[J].生态学杂志,2002,21(3):33-38. |
PENG S L,NAN P, ZHONG Y.Terpenoids in higher plants and their roles in ecosystems[J].Chinese Journal of Ecology,2002,21(3):33-38. | |
[70] | ERVIN G N, WETZEL R G.Allelochemical autotoxicity in the emergent wetland macrophyte Juncus effusus (Juncaceae)[J].American Journal of Botany,2000,87(6):853-860. |
[71] | 孔垂华,徐效华,梁文举,等.水稻化感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性[J].生态学报,2004,24(7):1317-1322. |
KONG C H, XU X H, LIANG W J,et al.Non-phenolic allelochemicals in root exudates of an allelopathic rice variety and their identification and weed-suppressive activity[J].Acta Ecologica Sinica,2004,24(7):1317-1322. | |
[72] | HUANG A C, JIANG T, LIU Y X,et al.A specialized metabolic network selectively modulates Arabidopsis root microbiota[J].Science,2019,364(6440):eaau6389. |
[73] | ZHONG Y, XUN W B, WANG X H,et al.Root-secreted bitter triterpene modulates the rhizosphere microbiota to improve plant fitness[J].Nature Plants,2022,8(8):887-896. |
[74] | 林大专,张义英,王俊儒.丹参中有效成分联合提取工艺的优化[J].中成药,2019,41(6):1392-1394. |
LIN D Z, ZHANG Y Y, WANG J R.Optimization of the joint extraction process of active ingredients in Salvia miltiorrhiza [J].Chinese Traditional Patent Medicine,2019,41(6):1392-1394. | |
[75] | AJIKUMAR P K, XIAO W H, TYO K E J,et al.Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli [J].Science,2010,330(6000):70-74. |
[76] | POLAKOWSKI T, STAHL U, LANG C.Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast[J].Applied Microbiology and Biotechnology,1998,49(1):66-71. |
[77] | OHTO C, MURAMATSU M, OBATA S,et al.Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols[J].Applied Microbiology and Biotechnology,2009,82(5):837-845. |
[78] | 程亚田,汤皓,孙丽丽,等.植物源二萜类化合物微生物合成研究进展[J].生物工程学报,2023,39(6):2265-2283. |
CHENG Y T, TANG H, SUN L L,et al.Advances on the microbial synthesis of plant-derived diterpenoids[J].Chinese Journal of Biotechnology,2023,39(6):2265-2283. | |
[79] | KEASLING J D.Synthetic biology and the development of tools for metabolic engineering[J].Metabolic Engineering,2012,14(3):189-195. |
[80] | 佟煜,张萌,王安琪,等.丹参及其相关制剂有效成分稳定性的研究进展[J].中成药,2024,46(3):860-865. |
TONG Y, ZHANG M, WANG A Q,et al.Research pro-gress on the stability of active ingredients in Salvia miltiorrhiza and related preparations[J].Chinese Traditional Patent Medicine,2024,46(3):860-865. |
[1] | 王建华, 陈慧泽, 韩榕. 叶面TiO2-NPs预处理对UV-B胁迫下小麦幼苗生长抑制的缓解效应[J]. 植物研究, 2025, 45(4): 592-602. |
[2] | 刘沿浩, 王建栋, 付玉杰. 刺梨叶中三萜类化合物的分离纯化与鉴定[J]. 植物研究, 2024, 44(6): 822-831. |
[3] | 郭冰冰, 刘明洋, 代龙军, 杨洪, 王立丰. 植物激素调控橡胶树产排胶机制研究进展[J]. 植物研究, 2024, 44(2): 161-167. |
[4] | 宋煜, 林文昊, 荆一博, 董懿, 金淑梅. 细叶百合Catalase基因的克隆及表达分析[J]. 植物研究, 2023, 43(5): 756-767. |
[5] | 李登高, 林睿, 穆青慧, 周娜, 张焱如, 白薇. 马铃薯StCRKs基因家族的鉴定分析及响应逆境信号的表达[J]. 植物研究, 2022, 42(6): 1033-1043. |
[6] | 王雪莹, 王瑞琪, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨CNGC家族全基因组鉴定及胁迫响应分析[J]. 植物研究, 2022, 42(4): 613-625. |
[7] | 谢望, 李天静, 李鑫窈, 杨丰铭, 姚银安, 高永峰. 胡杨PeNAC121基因启动子的分离鉴定和胁迫应答模式分析[J]. 植物研究, 2022, 42(2): 234-242. |
[8] | 张福臻, 刘方惠, 陈鑫欣, 孙静, 葛荣朝. 水稻OsRPK2基因的克隆及功能初步鉴定[J]. 植物研究, 2021, 41(4): 604-613. |
[9] | 董实伟, 杨宇宁, 王乃锐, 张含国, 李淑娟. 毛果杨固有无序蛋白质基因克隆及胁迫响应分析[J]. 植物研究, 2020, 40(4): 575-582. |
[10] | 何好, 朱国庆, 陈诗雅, 徐畅, 金淑梅. 细叶百合LpPEX7基因克隆及盐胁迫下的表达特性分析[J]. 植物研究, 2020, 40(2): 274-283. |
[11] | 王萌, 张冬, 陆燕茜, 肖化兴, 郑服丛, 张宇. 巴西橡胶树中小檗碱桥酶HbBBE1在逆境胁迫中的作用[J]. 植物研究, 2018, 38(5): 704-713. |
[12] | 蒋海港, 王树刚, 刘阳, 沈彦合, 李祥宁, 曹颖. 基于转录组测序的慈竹笋木质素基因筛选及其表达分析[J]. 植物研究, 2018, 38(3): 415-421. |
[13] | 冯德明, 温佩颖, 赵畅, 杨远彪, 杨桂燕, 于丽丽, 高彩球. 刚毛柽柳ThDREB基因在酵母中的表达及抗逆能力分析[J]. 植物研究, 2017, 37(1): 63-68. |
[14] | 宋方圆1;宿红艳2*;程显好2;朱路英2;王磊1. 番茄TNAC基因的鉴定及表达分析[J]. 植物研究, 2015, 35(6): 898-903. |
[15] | 王苏苏1;陈国平1;张彦杰1;殷文成1;朱明库1;张建苓1;唐区林2;胡宗利1*. 番茄转录因子SlYABBY5的克隆与表达分析[J]. 植物研究, 2015, 35(2): 240-249. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||