植物研究 ›› 2025, Vol. 45 ›› Issue (4): 603-613.doi: 10.7525/j.issn.1673-5102.2025.04.012
柴民伟1,2, 吴一凡1,2, 李瑞利1,2, 周琳1,2, 沈小雪1,2()
收稿日期:
2025-01-06
出版日期:
2025-07-20
发布日期:
2025-07-25
通讯作者:
沈小雪
E-mail:shenxxy@pku.edu.cn
作者简介:
柴民伟(1984—),男,博士,主要从事城市水文学和海岸带生态修复与管理研究。
基金资助:
Minwei CHAI1,2, Yifan WU1,2, Ruili LI1,2, Lin ZHOU1,2, Xiaoxue SHEN1,2()
Received:
2025-01-06
Online:
2025-07-20
Published:
2025-07-25
Contact:
Xiaoxue SHEN
E-mail:shenxxy@pku.edu.cn
摘要:
城市红树林面临重金属和微塑料(MPs)复合污染的环境问题。其中,镉(Cd)具有较高的生态风险,聚乙烯(PE)和聚氯乙烯(PVC)是红树林中常见的微塑料污染物。该研究以红树植物秋茄(Kandelia obovata)为研究对象,开展重金属Cd(0、5、50 mg·kg-1)和微塑料(小粒径PE(13 μm)、大粒径PE(830 μm);小粒径PVC(13 μm)、大粒径PVC(830 μm))复合胁迫试验,探究Cd和MPs及二者复合对秋茄生长和光合特征的影响。结果表明:(1)PE对秋茄生长的影响不显著;在高Cd胁迫(50 mg·kg-1)下,大粒径PVC显著抑制根和叶的生长(P<0.05)。(2)叶中营养元素Na、K、Ca、Mg含量受Cd胁迫程度、MPs类型和粒径的影响。(3)MPs与Cd对叶绿素含量的抑制具有协同作用,其中,低Cd(5 mg·kg-1)与小粒径PVC复合胁迫下叶片中叶绿素a和类胡萝卜素含量最低,高Cd与小粒径PVC复合胁迫下叶片中叶绿素b含量最低;在高Cd胁迫下,小粒径PVC处理使叶净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)及叶片实际光化学量子产量(Y(Ⅱ))、电子传递速率(ETR)、光化学淬灭系数(qP)和光化学耗散的相对份额(P)显著提高(P<0.05),说明小粒径PVC处理可以缓解Cd胁迫对秋茄光合作用的毒害作用;与单独Cd胁迫相比,Cd与PE复合胁迫对秋茄叶绿素荧光参数无显著影响。综上,PE及其与Cd复合胁迫对秋茄生长及光合作用影响不显著;PVC对Cd胁迫具有较强的协同作用,小粒径PVC缓解Cd对秋茄光合作用的负面影响,而大粒径PVC的毒害作用更强。
中图分类号:
柴民伟, 吴一凡, 李瑞利, 周琳, 沈小雪. 镉和微塑料及二者复合对秋茄生长及光合特征的影响[J]. 植物研究, 2025, 45(4): 603-613.
Minwei CHAI, Yifan WU, Ruili LI, Lin ZHOU, Xiaoxue SHEN. The Influence of Cadmium, Microplastics, and Their Combination on the Growth and Photosynthetic Characteristics of Kandelia obovata[J]. Bulletin of Botanical Research, 2025, 45(4): 603-613.
表1
Cd和MPs复合胁迫试验设计
处理组 Treatment group | 处理方式 Treatment method |
---|---|
Cd0N-MPs | 不添加MPs和Cd |
Cd0PE-L | 830 μm PE(5%) |
Cd0PE-S | 13 μm PE(5%) |
Cd0PVC-L | 830 μm PVC(5%) |
Cd0PVC-S | 13 μm PVC(5%) |
Cd5N-MPs | Cd(5 mg·kg-1) |
Cd5PE-L | Cd(5 mg·kg-1)+830 μm PE(5%) |
Cd5PE-S | Cd(5 mg·kg-1)+13 μm PE(5%) |
Cd5PVC-L | Cd(5 mg·kg-1)+830 μm PVC(5%) |
Cd5PVC-S | Cd(5 mg·kg-1)+13 μm PVC(5%) |
Cd50N-MPs | Cd(50 mg·kg-1) |
Cd50PE-L | Cd(50 mg·kg-1)+830 μm PE(5%) |
Cd50PE-S | Cd(50 mg·kg-1)+13 μm PE(5%) |
Cd50PVC-L | Cd(50 mg·kg-1)+830 μm PVC(5%) |
Cd50PVC-S | Cd(50 mg·kg-1)+13 μm PVC(5%) |
表2
Cd和MPs及其交互作用对秋茄生长的双因素方差分析
指标 Indicators | 变异来源 Sources | |||||
---|---|---|---|---|---|---|
PE | Cd | PE×Cd | PVC | Cd | PVC×Cd | |
根生物量 Root biomass | 0.75 | 1.52 | 1.17 | 17.02** | 1.22 | 1.32 |
茎生物量 Stem biomass | 3.10 | 2.07 | 0.02 | 1.34 | 16.55*** | 0.11 |
叶生物量 Leaf biomass | 0.26 | 6.72* | 0.27 | — | — | — |
总生物量 Total biomass | 0.72 | 2.22 | 0.59 | 22.62*** | 2.75 | 2.88 |
根冠比 Root-shoot ratio | 0.30 | 2.27 | 0.77 | 2.72 | 8.68** | 4.47* |
叶Na含量 Leaf Na content | 22.77** | 17.60** | 0.40 | — | — | — |
叶K含量 Leaf K content | 3.12 | 1.23 | 3.36 | — | — | — |
叶Ca含量 Leaf Ca content | 0.10 | 13.16** | 1.56 | — | — | — |
叶Mg含量 Leaf Mg content | 0.05 | 19.05** | 7.28* | — | — | — |
叶叶绿素a含量 Leaf chlorophyll a content | 1.21 | 5.43* | 4.15* | — | — | — |
叶叶绿素b含量 Leaf chlorophyll b content | 1.65 | 4.56* | 3.21 | — | — | — |
叶类胡萝卜素含量 Leaf carotenoids content | 0.30 | 8.33** | 2.22 | — | — | — |
叶总叶绿素含量 Leaf total chlorophyll content | 1.48 | 4.99* | 3.94* | — | — | — |
叶净光合速率 Leaf Pn | 8.23** | 64.70*** | 0.55 | — | — | — |
叶气孔导度 Leaf Gs | 12.43*** | 23.57*** | 41.79*** | — | — | — |
叶蒸腾速率 Leaf Tr | 0.34 | 34.97*** | 44.10*** | — | — | — |
叶水分利用效率 Leaf EWU | 0.56 | 132.51*** | 103.47*** | — | — | — |
叶最大光化学量子产量 Leaf Fv/Fm | 0.18 | 10.65** | 3.11 | — | — | — |
叶实际光化学量子产量 Leaf Y(Ⅱ) | 0.08 | 79.17*** | 5.18* | — | — | — |
叶电子传递速率 Leaf ETR | 0.08 | 79.17*** | 5.18* | — | — | — |
叶光化学淬灭系数 Leaf qP | 0.43 | 33.04*** | 1.25 | — | — | — |
叶非光化学淬灭系数 Leaf NPQ | 0.62 | 15.15*** | 1.51 | — | — | — |
叶PSⅡ调节性能量耗散的量子产量 Leaf Y(NPQ) | 0.73 | 29.24*** | 2.46 | — | — | — |
叶PSⅡ非调节性能量耗散的量子产量 Leaf Y(NO) | 0.72 | 0.92 | 0.81 | — | — | — |
光化学耗散的相对份额 Leaf P | 0.08 | 79.17*** | 5.18* | — | — | — |
非光化学耗散的相对份额 Leaf Ex | 0.68 | 15.75*** | 0.64 | — | — | — |
天线热耗散份额Leaf D | 2.01 | 73.90*** | 6.02* | — | — | — |
表3
Cd和MPs复合胁迫下秋茄叶片营养元素含量特征
组别 Group | 元素质量分数 Element mass fraction/(mg·g-1) | Na∶K | |||
---|---|---|---|---|---|
Na | K | Ca | Mg | ||
Cd0N-MPs | 10.60±2.46a | 24.30±1.01a | 11.24±1.45a | 7.63±0.73a | 0.44±0.12a |
Cd0PE-L | 6.01±0.90a | 17.99±2.14b | 12.05±1.63a | 7.04±0.82a | 0.34±0.07a |
Cd0PE-S | 7.82±1.53a | 12.05±1.17c | 9.27±0.36a | 5.87±0.45a | 0.61±0.09a |
Cd0PVC-L | — | — | — | — | — |
Cd0PVC-S | 7.00±1.87a | 13.57±2.71c | 9.43±0.41a | 6.18±1.11a | 0.51±0.07a |
Cd5N-MPs | 11.08±3.76a | 16.82±1.03b | 9.54±2.04a | 6.41±1.39a | 0.66±0.21a |
Cd5PE-L | 11.72±1.51a | 22.23±1.54a | 10.79±3.17a | 6.94±1.29a | 0.53±0.05a |
Cd5PE-S | 7.23±2.19a | 22.35±4.20ab | 11.90±0.52a | 8.10±0.35a | 0.34±0.16a |
Cd5PVC-L | — | — | — | — | — |
Cd5PVC-S | 7.84±0.30a | 19.25±±1.07ab | 9.18±1.53a | 6.45±0.49a | 0.41±0.02a |
Cd50N-MPs | 8.58±1.93b | 23.28±1.34a | 10.28±0.98a | 6.56±0.66a | 0.37±0.08a |
Cd50PE-L | 14.69±1.55a | 23.57±1.70a | 7.94±2.62ab | 6.28±0.27a | 0.63±0.09a |
Cd50PE-S | 11.24±1.10ab | 16.90±5.20b | 6.05±0.45b | 5.31±0.28b | 0.70±0.19a |
Cd50PVC-L | — | — | — | — | — |
Cd50PVC-S | 8.63±2.51b | 11.96±1.14b | 10.21±1.40a | 7.14±0.50a | 0.70±0.25a |
表4
Cd和MPs复合胁迫下秋茄叶片叶绿素荧光参数特征
组别 Group | 最大光化学量 子产量Fv/Fm | 实际光化学量 子产量Y(Ⅱ) | 电子传递 速率ETR | 光化学淬 灭系数qP | 非光化学 淬灭系数NPQ | PSⅡ调节性能量 耗散的量子产量 Y(NPQ) | PSⅡ非调节性能量耗散的量子产量Y(NPQ) | 光化学耗散的 相对份额P | 非光化学耗散 的相对份额Ex | 天线热耗 散份额D |
---|---|---|---|---|---|---|---|---|---|---|
Cd0N-MPs | 0.813±0.037a | 0.67±0.02a | 38.75±1.20a | 0.911±0.029a | 0.20±0.04a | 0.06±0.01a | 0.27±0.01a | 0.67±0.02a | 0.066±0.021c | 0.260±0.008b |
Cd0PE-L | 0.811±0.011a | 0.64±0.03ab | 36.66±1.42ab | 0.880±0.035ab | 0.26±0.13a | 0.07±0.03a | 0.29±0.01a | 0.64±0.03ab | 0.087±0.025bc | 0.276±0.001ab |
Cd0PE-S | 0.813±0.009a | 0.60±0.02bc | 34.74±0.95bc | 0.854±0.008bc | 0.37±0.10a | 0.11±0.03a | 0.29±0.01a | 0.60±0.02bc | 0.103±0.009ab | 0.293±0.025a |
Cd0PVC-L | — | — | — | — | — | — | — | — | — | — |
Cd0PVC-S | 0.811±0.002a | 0.59±0.02c | 33.63±1.25c | 0.816±0.028c | 0.30±0.05a | 0.10±0.01a | 0.32±0.02a | 0.59±0.02c | 0.132±0.020a | 0.283±0.004ab |
Cd5N-MPs | 0.807±0.006ab | 0.56±0.02a | 31.99±1.15a | 0.814±0.024a | 0.42±0.04a | 0.13±0.01a | 0.31±0.02a | 0.56±0.02a | 0.127±0.016a | 0.317±0.005a |
Cd5PE-L | 0.799±0.006b | 0.57±0.01a | 32.80±0.58a | 0.838±0.011a | 0.42±0.04a | 0.13±0.01a | 0.30±0.01a | 0.57±0.01a | 0.110±0.007a | 0.320±0.003a |
Cd5PE-S | 0.809±0.003a | 0.62±0.04a | 35.44±2.29a | 0.855±0.044a | 0.27±0.09a | 0.08±0.03a | 0.30±0.01a | 0.62±0.04a | 0.104±0.031a | 0.280±0.018b |
Cd5PVC-L | — | — | — | — | — | — | — | — | — | — |
Cd5PVC-S | 0.804±0.009ab | 0.58±0.02a | 33.02±0.90a | 0.836±0.017a | 0.39±0.07a | 0.12±0.02a | 0.31±0.02a | 0.57±0.02a | 0.113±0.009a | 0.310±0.021a |
Cd50N-MPs | 0.782±0.005ab | 0.44±0.02c | 25.40±1.31c | 0.763±0.029ab | 1.08±0.13a | 0.29±0.01a | 0.27±0.02a | 0.44±0.02c | 0.137±0.016bc | 0.422±0.012a |
Cd50PE-L | 0.795±0.003ab | 0.48±0.01b | 27.34±0.53b | 0.768±0.004b | 0.80±0.07a | 0.23±0.01b | 0.29±0.01a | 0.48±0.01b | 0.143±0.004ab | 0.381±0.012b |
Cd50PE-S | 0.777±0.019b | 0.47±0.01b | 27.13±0.67b | 0.755±0.009b | 0.67±0.29ab | 0.21±0.06bc | 0.32±0.06a | 0.47±0.01b | 0.153±0.006a | 0.376±0.012b |
Cd50PVC-L | — | — | — | — | — | — | — | — | — | — |
Cd50PVC-S | 0.804±0.003a | 0.56±0.02a | 31.92±1.24a | 0.825±0.009a | 0.47±0.05b | 0.14±0.01c | 0.30±0.02a | 0.56±0.02a | 0.118±0.003c | 0.327±0.020c |
[1] | SHI C, YU L Y, CHAI M W,et al.The distribution and risk of mercury in Shenzhen mangroves,representative urban mangroves affected by human activities in China[J].Marine Pollution Bulletin,2020,151:110866. |
[2] | RAHMAN S U, HAN J C, ZHOU Y,et al.Adaptation and remediation strategies of mangroves against heavy metal contamination in global coastal ecosystems:a review[J].Journal of Cleaner Production,2024,441:140868. |
[3] | CHEN Z L, LEE S Y.Contribution of microplastics to carbon storage in coastal wetland sediments[J].Environmental Science & Technology Letters,2021,8(12):1045-1050. |
[4] | RICO A, REDONDO-HASSELERHARM P E, SCHELL T,et al.Microplastic burial potential and ecological risks in mangrove forests of the Amazon River delta[J].Science of the Total Environment,2024,957:177666. |
[5] | GUO J J, HUANG X P, XIANG L,et al.Source,migration and toxicology of microplastics in soil[J].Environment International,2020,137:105263. |
[6] | 刘加强,崔陆,周子振,等.土壤中微塑料:类型、载体效应、迁移行为和潜在风险综述[J].生态学报,2024,44(9):3586-3599. |
LIU J Q, CUI L, ZHOU Z Z,et al.Microplastics in soils:a review of types,carrier effects,migration behavior,and potential risks[J].Acta Ecologica Sinica,2024,44(9):3586-3599. | |
[7] | MAI L, HE H, BAO L J,et al.Plastics are an insignificant carrier of riverine organic pollutants to the coastal oceans[J].Environmental Science & Technology,2020,54(24):15852-15860. |
[8] | DENG J, GUO P Y, ZHANG X Y,et al.Microplastics and accumulated heavy metals in restored mangrove wetland surface sediments at Jinjiang Estuary(Fujian,China)[J].Marine Pollution Bulletin,2020,159:111482. |
[9] | 刘倡君,罗专溪,闫钰,等.九龙江口红树林湿地表层沉积物中微塑料赋存特征与重金属的关系[J].环境科学,2022,43(1):239-246. |
LIU C J, LUO Z X, YAN Y,et al.Occurrence characteristics of microplastics in mangrove sediments in the Jiulong River estuary and the association with heavy metals[J].Environmental Science,2022,43(1):239-246. | |
[10] | 吴萍,张杏锋,高波,等.微塑料对超富集植物少花龙葵Cd累积的影响[J].环境科学与技术,2022,45(1):174-181. |
WU P, ZHANG X F, GAO B,et al.Effects of polyethylene on Cd accumulation of hyperaccumulator Solanum photeinocarpum [J].Environmental Science & Technology,2022,45(1):174-181. | |
[11] | WANG F Y, ZHANG X Q, ZHANG S Q,et al.Effects of co-contamination of microplastics and Cd on plant growth and Cd accumulation[J].Toxics,2020,8(2):36. |
[12] | ZHANG Z Q, LI Y, QIU T Y,et al.Microplastics addition reduced the toxicity and uptake of cadmium to Brassica chinensis L[J].Science of the Total Environment,2022,852:158353. |
[13] | 王泽正,杨亮,李婕,等.微塑料和镉及其复合对水稻种子萌发的影响[J].农业环境科学学报,2021,40(1):44-53. |
WANG Z Z, YANG L, LI J,et al.Single and combined effects of microplastics and cadmium on the germination characteristics of rice seeds[J].Journal of Agro-Environment Science,2021,40(1):44-53. | |
[14] | 刘沙沙,杨越,吴静华.微(纳)米塑料介导下多环芳烃的毒性效应研究进展[J].肇庆学院学报,2022,43(2):61-65. |
LIU S S, YANG Y, WU J H.Toxic effects of polycyclic aromatic hydrocarbons mediated by micro (nano) plastics[J].Journal of Zhaoqing University,2022,43(2):61-65. | |
[15] | WANG B B, WANG P H, ZHAO S B,et al.Combined effects of microplastics and cadmium on the soil-plant system:phytotoxicity,Cd accumulation and microbial activity[J].Environmental Pollution,2023,333:121960. |
[16] | CAO Y X, ZHAO M J, Ma X Y,et al.A critical review on the interactions of microplastics with heavy metals:mechanism and their combined effect on organisms and humans[J].Science of the Total Environment,2021,788:147620. |
[17] | HUANG F Y, CHEN L, YANG X,et al.Unveiling the impacts of microplastics on cadmium transfer in the soil-plant-human system:a review[J].Journal of Hazardous Materials,2024,477:135221. |
[18] | 李荣玉,邱国玉,沈小雪,等.镉胁迫下铵态氮对红树植物秋茄(Kandelia obovata)生理生态特征的影响[J].植物研究,2018,38(5):653-660. |
LI R Y, QIU G Y, SHEN X X,et al.Effects of ammonium nitrogen on physiological and ecological characteristics of Kandelia obovata under cadmium stress[J].Bulletin of Botanical Research,2018,38(5):653-660. | |
[19] | CHAI M W, LI R L, LI B,et al.Responses of mangrove (Kandelia obovata) growth,photosynthesis,and rhizosphere soil properties to microplastic pollution[J].Marine Pollution Bulletin,2023,189:114827. |
[20] | NACARIO P B,ALFAFARA P A M, CENIZA N A M,et al.Uptake,growth,and oxidative stress responses of Rhizophora mucronata (Poir.in Lam.) propagules exposed to high-density polyethylene microplastics[J].Marine Pollution Bulletin,2025,212:117569. |
[21] | DAI M Y, LU H L, LIU W W,et al.Phosphorus mediation of cadmium stress in two mangrove seedlings Avicennia marina and Kandelia obovata differing in cadmium accumulation[J].Ecotoxicology and Environmental Safety,2017,139:272-279. |
[22] | CHAI M W, LI R L, DING H,et al.Occurrence and contamination of heavy metals in urban mangroves:a case study in Shenzhen,China[J].Chemosphere,2019,219:165-173. |
[23] | FULLER S, GAUTAM A.A procedure for measuring microplastics using pressurized fluid extraction[J].Environmental Science & Technology,2016,50(11):5774-5780. |
[24] | FEI Y F, HUANG S Y, ZHANG H B,et al.Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil[J].Science of the Total Environment,2020,707:135634. |
[25] | 郝再彬,苍晶,徐仲.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社,2004. |
HAO Z B, CANG J, XU Z.Plant physiological experiment[M].Harbin:Harbin Industrial University Press,2004. | |
[26] | GENTY B, BRIANTAIS J M, BAKER N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J].Biochimica et Biophysica Acta(BBA)-General Subjects,1989,990(1):87-92. |
[27] | 张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448. |
ZHANG S R.A discussion on chlorophyll fluorescence kinetics parameters and their significance[J].Chinese Bulletin of Botany,1999,16(4):444-448 | |
[28] | KLUGHAMMER C, SCHREIBER U.Saturation pulse method for assessment of energy conversion in PSⅠ[J].PAM Application Notes,2008,1:11-14. |
[29] | DEMMIG-ADAMS B, ADAMS W W, BARKER D H,et al.Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J].Physiologia Plantarum,1996,98(2):253-264. |
[30] | 杨杰,李连祯,周倩,等.土壤环境中微塑料污染:来源、过程及风险[J].土壤学报,2021,58(2):281-298. |
YANG J, LI L Z, ZHOU Q,et al.Microplastics contamination of soil environment:sources,processes and risks[J].Acta Pedologica Sinica,2021,58(2):281-298. | |
[31] | WANG F Y, ZHANG X Q, ZHANG S Q,et al.Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil[J].Chemosphere,2020,254:126791. |
[32] | 陈欣,郭薇,李济之,等.土壤微塑料影响植物生长的因素与机制研究进展[J].农业环境科学学报,2024,43(3):488-495. |
CHEN X, GUO W, LI J Z,et al.Research progress on the influencing factors and mechanisms of soil microplastics on plant growth[J].Journal of Agro-Environment Science,2024,43(3):488-495. | |
[33] | URBINA M A, CORREA F, ABURTO F,et al.Adsorption of polyethylene microbeads and physiological effects on hydroponic maize[J].Science of the Total Environment,2020,741:140216. |
[34] | QI Y L, YANG X M, PELAEZ A M,et al.Macro- and micro- plastics in soil-plant system:effects of plastic mulch film residues on wheat (Triticum aestivum) growth[J].Science of the Total Environment,2018,645:1048-1056. |
[35] | JIANG X F, CHEN H, LIAO Y C,et al.Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba [J].Environmental Pollution,2019,250:831-838. |
[36] | DE SOUZA MACHADO A A, LAU C W, KLOAS W,et al.Microplastics can change soil properties and affect plant performance[J].Environmental Science & Technology,2019,53(10):6044-6052. |
[37] | JAMES R A, MUNNS R, VON CAEMMERER S,et al.Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+,K+ and Cl- in salt-affected barley and durum wheat[J].Plant,Cell & Environment,2006,29(12):2185-2197. |
[38] | GOGORCENA Y, LARBI A, ANDALUZ S,et al.Effects of cadmium on cork oak(Quercus suber L.) plants grown in hydroponics[J].Tree Physiology,2011,31(12):1401-1412. |
[39] | 李贞霞,李庆飞,李瑞静,等.黄瓜幼苗对微塑料和镉污染的生理响应[J].农业环境科学学报,2020,39(5):973-981. |
LI Z X, LI Q F, LI R J,et al.Physiological response of cucumber seedlings to microplastics and cadmium[J].Journal of Agro-Environment Science,2020,39(5):973-981. | |
[40] | WANG J L, LIU W T, WANG X,et al.Assessing stress responses in potherb mustard (Brassica juncea var. multiceps) exposed to a synergy of microplastics and cadmium:insights from physiology,oxidative damage,and metabolomics[J].Science of the Total Environment,2024,907:167920. |
[41] | ZOUARI M, AHMED C BEN, ZORRIG W,et al.Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity,water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.)[J].Ecotoxicology and Environmental Safety,2016,128:100-108. |
[42] | YAN Z Z, TAM N F Y.Effects of lead stress on anti-oxidative enzymes and stress-related hormones in seedlings of Excoecaria agallocha Linn[J].Plant and Soil,2013,367(1/2):327-338. |
[43] | BENAVIDES M P, GALLEGO S M, TOMARO M L.Cadmium toxicity in plants[J].Brazilian Journal of Plant Physiology,2005,17(1):21-34. |
[1] | 赵慧博, 赵志强, 包春光, 温琦, 李茹鑫, 黄凤兰. 镉(Cd)胁迫下蓖麻蛋白质组学筛查及RcBSK7抗性功能研究[J]. 植物研究, 2023, 43(1): 36-50. |
[2] | 白舒冰, 邢小艺, 关雯雨, 董丽. 首云铁矿废弃土壤对2种景天属植物生长的影响[J]. 植物研究, 2022, 42(4): 677-687. |
[3] | 彭春雪, 崔雪梅, 沈海龙. 暴马丁香成熟胚愈伤组织和体胚诱导及其生理状态解析[J]. 植物研究, 2021, 41(4): 557-563. |
[4] | 李荣玉, 邱国玉, 沈小雪, 柴民伟. 镉胁迫下铵态氮对红树植物秋茄(Kandelia obovata)生理生态特征的影响[J]. 植物研究, 2018, 38(5): 653-660. |
[5] | 杨玲, 刘虹男, 张冬严, 魏骋, 沈海龙. 生长调节剂和渗透调节物质对水曲柳体胚发生的影响[J]. 植物研究, 2017, 37(5): 682-689. |
[6] | 刘大丽;毛子军;安志刚*;马龙彪;鲁振强. 过量表达拟南芥AtGCS可以提高E.coli的重金属耐受性及富集能力[J]. 植物研究, 2013, 33(3): 325-329. |
[7] | 付兰;张朝晖;*. 贵州省新路卡林型金矿区苔藓植物多样性及重金属污染监测[J]. 植物研究, 2012, 32(5): 636-640. |
[8] | 爱霞;方炎明*. 6种交通重金属污染物在悬铃木叶、枝条组织中的分布研究[J]. 植物研究, 2011, 31(4): 478-488. |
[9] | 谢斐;张朝晖;*. 葫芦藓(Funaria hygrometrica)配子体和孢子体重金属富集特性比较[J]. 植物研究, 2011, 31(1): 117-120. |
[10] | 于兴洋;王文杰;杨逢建;许慧男;李冉;邱岭;王莹;祖元刚*. 重度盐碱地改良措施对土壤特性和不同植物光合、生长的影响[J]. 植物研究, 2010, 30(4): 473-478. |
[11] | 栗孟飞;李唯;杜微;李金娟. 桃儿七种子休眠机理及种子内含物对苯二酚的生物活性研究[J]. 植物研究, 2010, 30(2): 215-220. |
[12] | 沈佳;纪桂琴;许文;周兴龙;石福臣*. 沉水植物菹草在低温条件下对重金属Cu、Pb、Zn的吸附和富集[J]. 植物研究, 2009, 29(5): 585-591. |
[13] | 王爱霞;张敏;黄利斌;方炎明*;高彩云. 南京市14种绿化树种对空气中重金属的累积能力[J]. 植物研究, 2009, 29(3): 368-374. |
[14] | 汪文云;张朝晖*. 贵州水银洞金矿紫茎泽兰重金属元素测定与分析[J]. 植物研究, 2008, 28(6): 760-763. |
[15] | 张义贤;李晓科. 镉、铅及其复合污染对大麦幼苗部分生理指标的影响[J]. 植物研究, 2008, 28(1): 43-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||