植物研究 ›› 2025, Vol. 45 ›› Issue (4): 546-557.doi: 10.7525/j.issn.1673-5102.2025.04.007
程薪宇1,2, 郭梦桥1, 官海云1, 茹剑1, 白琰3, 郭连金1()
收稿日期:
2025-02-07
出版日期:
2025-07-20
发布日期:
2025-07-25
通讯作者:
郭连金
E-mail:guolianjin@163.com
作者简介:
程薪宇(1985—),男,博士研究生,副教授,主要从事植物生理学及解剖学等研究。
基金资助:
Xinyu CHENG1,2, Mengqiao GUO1, Haiyun GUAN1, Jian RU1, Yan BAI3, Lianjin GUO1()
Received:
2025-02-07
Online:
2025-07-20
Published:
2025-07-25
Contact:
Lianjin GUO
E-mail:guolianjin@163.com
摘要:
为探究中国特有濒危植物香果树(Emmenopterys henryi)种子萌发所需光照时间及不同光照时间下种子形态性状与萌发率间相关性,以香果树种子为研究材料,比较0、1、2(8 h/1st day+4 h/2nd day)、2、4、6、8 d光照处理下种子萌发率差异,观察并分析种子形态与萌发时间相关性。同时,利用高通量测序技术对经避光(2 d)与基础光照(种子萌发率≥50%所需的最短光照时间,2 d)处理的香果树种子进行转录组测序与分析。结果显示:光照处理条件下,供试种子萌发率随光照时间延长而提高,8 d光照处理种子培养至10 d萌发率为98.89%;种子形态特征与萌发时间相关性分析结果显示,种仁长、种仁长宽比与萌发时间呈显著负相关(P<0.05)。避光(2 d)与基础光照(2 d)处理的种子转录组响应及其生物信息学解析共发现4 657个显著差异表达基因(DEGs),上调表达的基因为2 950个,下调表达的基因为1 707个。鉴定出的185个转录因子中,光照处理组HSF家族成员全部表达下调,蛋白质代谢相关GO term被显著富集。DEGs在二萜生物合成(ko00904)、半胱氨酸与甲硫氨酸代谢(ko00270)和植物-病原菌互作(ko04626)等与胚发育、种苗抗逆性相关的KEGG通路上显著富集(P-adjust<0.05)。综上,香果树种子中种仁较大者萌发更早,光照2 d可满足香果树种子萌发的基本需求。该研究为揭示香果树野外种群结构异常的形成机制及推动野外种群复壮提供理论依据。
中图分类号:
程薪宇, 郭梦桥, 官海云, 茹剑, 白琰, 郭连金. 香果树种子萌发的光照需求及其转录组响应分析[J]. 植物研究, 2025, 45(4): 546-557.
Xinyu CHENG, Mengqiao GUO, Haiyun GUAN, Jian RU, Yan BAI, Lianjin GUO. Light Requirements for Germination of Emmenopterys henryi Oliv. Seeds and Transcriptome Response Analysis[J]. Bulletin of Botanical Research, 2025, 45(4): 546-557.
表1
引物信息
基因ID Gene ID | GO ID | 正向引物序列(5′→3′) Forward primer sequence(5′→3′) | 反向引物序列(3′→5′) Reverse primer sequence(3′→5′) |
---|---|---|---|
GAPDH | CTTCTGGTGTCTTCACAACGG | TGCTGATTGACGGAACGAGG | |
XP_027110626.1 | GO:0009793 | GCAACTCCACCACAACAAACA | TAGAACGGGGACAAGCACA |
XP_027084411.1 | GO:0000981 | AGCTTCCTTCCAAGCCTCTT | CCTGAACTGGCTCTAAGACGA |
XP_027113076.1 | GO:0006412 | AGGTGAATGGTGGGTCTGTTG | GAAGGGGCGTTTTGGGTA |
KAA8515047.1 | GO:0005840 | AGGCTGTTGTTATCCATGTGC | CGCTGGGCTTCCTATGACT |
XP_027149223.1 | GO:0016021 | AACCTCGCACAGTTCCTCG | CACCCCTCCTCTAATGATGTCC |
XP_027158305.1 | GO:0005634 | GAGGATGACGGCGGTGAC | TCGTGTTGTGAGATTTAGGCTT |
CDP15123.1 | GO:0005618 | GAAAGGGAGGCAGGGAACA | TTAGTGAACCGCAAGGTATGG |
XP_027077828.1 | GO:0016787 | CGATAGTGGAGGACCCTGATC | CCTTACCTGTATTTTCCCGG |
表2
不同光照时间和培养时间下香果树种子萌发率 (%)
处理组 Treatment group | 萌发率 Germination rate | ||||||
---|---|---|---|---|---|---|---|
4 d | 5 d | 6 d | 7 d | 8 d | 9 d | 10 d | |
0 DY | 0b | 0d | 0e | 0f | 0e | 0e | 0e |
1 DY | 0b | 0d | 0e | 0f | 1.11±1.92e | 1.11±1.92e | 1.11±1.92e |
2 DY* | 0b | 3.33±0.00c | 12.22±1.92d | 13.33±0.00e | 13.33±0.00d | 22.22±1.92d | 22.22±1.92d |
2 DY | 5.56±1.92a | 23.33±0.00b | 38.89±7.70c | 53.33±10.00d | 58.89±13.47c | 64.44±10.18c | 70.00±8.82c |
4 DY | 5.56±3.85a | 27.78±5.09b | 56.67±12.02b | 72.22±5.09c | 85.56±6.94b | 85.56±6.94b | 87.78±6.94b |
6 DY | 7.78±3.85a | 27.78±8.39b | 63.33±3.33ab | 82.22±8.39b | 83.33±6.67b | 90.00±6.67ab | 90.00±6.67ab |
8 DY | 10.00±5.77a | 41.11±13.47a | 70.00±3.33a | 95.56±3.85a | 98.89±1.92a | 98.89±1.92a | 98.89±1.92a |
表3
香果树种子形态
种子面积 SA/mm2 | 种子长 SL/mm | 种子宽 SW/mm | 种子长宽比 SL/SW | 种仁面积 SKA/mm2 | 种仁长 SKL/mm | 种仁宽 SKW/mm | 种仁长宽比 SKL/SKW | |
---|---|---|---|---|---|---|---|---|
平均值±标准差 Means ± SD | 12.77±3.79 | 8.27±1.94 | 2.54±0.41 | 3.31±0.92 | 2.23±0.54 | 2.28±0.31 | 1.35±0.18 | 1.70±0.20 |
区间 Interval ranges | 3.30~24.29 | 3.19~14.07 | 1.62~4.02 | 1.79~6.75 | 0.81~4.11 | 1.45~3.24 | 0.72~1.84 | 1.20~2.36 |
变异系数 Coefficient of variation/% | 29.68 | 23.46 | 16.14 | 27.79 | 24.22 | 13.6 | 13.33 | 11.76 |
表4
不同光照时间下种子外形性状与萌发时间相关性分析
种子萌发参数 Seed germination parameter | 光照处理时间 Light treatment time/d | 种子外形性状Seed shape traits | |||||||
---|---|---|---|---|---|---|---|---|---|
种子面积 SA | 种子长 SL | 种子宽 SW | 种子长宽比 SL/SW | 种仁面积 SKA | 种仁长 SKL | 种仁宽 SKW | 种仁长宽比 SKL/SKW | ||
萌发时间 Germination time | 2 | -0.045 | -0.005 | -0.023 | -0.006 | -0.126 | -0.213 | 0.009 | -0.322* |
4 | 0.166 | 0.139 | 0.071 | 0.061 | -0.238 | -0.394* | -0.099 | -0.236 | |
6 | 0.278 | 0.254 | 0.264 | 0.056 | -0.312 | -0.381* | -0.096 | -0.335* |
表5
光照处理2 d组(G组)与避光处理2 d组(A组)转录因子家族差异表达基因
转录因子家族 Transcription factor family | 差异表达基因数量 DEGs number | 上调基因 Up-regulated genes | 下调基因 Down-regulated genes |
---|---|---|---|
AP2/ERF | 35 | 27 | 8 |
NAC | 19 | 13 | 6 |
MYB_superfamily | 17 | 13 | 4 |
bHLH | 16 | 13 | 3 |
C2C2 | 15 | 15 | 0 |
WRKY | 15 | 14 | 1 |
GRAS | 14 | 14 | 0 |
LBD (AS2/LOB) | 10 | 8 | 2 |
HSF | 7 | 0 | 7 |
LOB | 7 | 6 | 1 |
bZIP | 6 | 4 | 2 |
C3H | 5 | 3 | 2 |
C2H2 | 4 | 3 | 1 |
ZF-HD | 4 | 4 | 0 |
B3_superfamily | 2 | 1 | 1 |
BES1 | 2 | 2 | 0 |
GRF | 2 | 1 | 1 |
SBP | 2 | 2 | 0 |
MADS | 2 | 1 | 1 |
GeBP | 1 | 1 | 0 |
表6
光照处理2 d组(G组)与避光处理2 d组(A组)差异表达基因KEGG富集分析
KEGG通路 KEGG pathway | 通路ID Pathway ID | 差异表达基因数量 DEGs number |
---|---|---|
核糖体 Ribosome | ko03010 | 151 |
内质网蛋白质加工 Protein processing in endoplasmic reticulum | ko04141 | 89 |
辅酶因子的生物合成 Biosynthesis of cofactors | ko01240 | 60 |
糖酵解/糖异生 Glycolysis / Gluconeogenesis | ko00010 | 44 |
苯丙素类生物合成 Phenylpropanoid biosynthesis | ko00940 | 37 |
半胱氨酸和甲硫氨酸代谢 Cysteine and methionine metabolism | ko00270 | 35 |
氨基糖和核苷酸糖代谢 Amino sugar and nucleotide sugar metabolism | ko00520 | 33 |
脂肪酸氧化 Fatty acid degradation | ko00071 | 27 |
乙醛酸和二羧酸代谢 Glyoxylate and dicarboxylate metabolism | ko00630 | 27 |
光合生物碳固定 Carbon fixation in photosynthetic organisms | ko00710 | 25 |
α-亚油酸代谢 Alpha-Linolenic acid metabolism | ko00592 | 22 |
精氨酸和脯氨酸代谢 Arginine and proline metabolism | ko00330 | 22 |
抗坏血酸和醛酸代谢 Ascorbate and aldarate metabolism | ko00053 | 17 |
戊糖和葡萄糖醛酸的相互转化 Pentose and glucuronate interconversions | ko00040 | 16 |
萜类骨架生物合成 Terpenoid backbone biosynthesis | ko00900 | 15 |
硒化合物代谢 Selenocompound metabolism | ko00450 | 10 |
类黄酮生物合成 Flavonoid biosynthesis | ko00941 | 10 |
不饱和脂肪酸的生物合成 Biosynthesis of unsaturated fatty acids | ko01040 | 10 |
二萜生物合成 Diterpenoid biosynthesis | ko00904 | 9 |
二苯乙烯、二芳基庚烷和姜辣素生物合成 Stilbenoid, diarylheptanoid and gingerol biosynthesis | ko00945 | 7 |
维生素B6代谢 Vitamin B6 metabolism | ko00750 | 6 |
植物激素信号转导 Plant hormone signal transduction | ko04075 | 65 |
MAPK信号通路-植物 MAPK signaling pathway - plant | ko04016 | 49 |
植物-病原菌互作 Plant-pathogen interaction | ko04626 | 55 |
昼夜节律-植物 Circadian rhythm - plant | ko04712 | 19 |
表7
基于RNA-seq和qRT-PCR技术的8个差异表达基因表达水平比较
基因ID Gene ID | lg相对表达量 lg relative expression | |
---|---|---|
qRT-PCR | RNA-seq | |
XP_027110626.1 | 1.14±0.11 | 0.38±0.04 |
XP_027084411.1 | 0.65±0.05 | 0.35±0.02 |
XP_027113076.1 | 0.24+0.02 | 0.33±0.03 |
KAA8515047.1 | 0.88±0.10 | 0.36±0.02 |
XP_027149223.1 | -0.17±0.02 | -0.73±0.06 |
XP_027158305.1 | -0.54±0.05 | -0.75±0.05 |
CDP15123.1 | -0.38±0.03 | -0.68±0.07 |
XP_027077828.1 | -0.13±0.02 | -0.68±0.04 |
[1] | 郭连金.濒危植物香果树幼苗空间格局及数量动态研究[J].西北植物学报,2014,34(9):1887-1893. |
GUO L J.Spatial distribution pattern and number dynamics of Emmenopterys henryi seedlings endangered in China[J].Acta Botanica Boreali-Occidentalia Sinica,2014,34(9):1887-1893. | |
[2] | MANCHESTER S R, CHEN Z D, LU A M,et al.Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere[J].Journal of Systematics and Evolution,2009,47(1):1-42. |
[3] | 金雅琴,陶积松,王德满,等.河南连康山自然保护区香果树种群结构与分布格局研究[J].生态与农村环境学报,2022,38(1):52-60. |
JIN Y Q, TAO J S, WANG D M,et al.Population structure and spatial distribution pattern of Emmenopterys henryi in Liankang Mountain Natural Reserve,Henan Province[J].Journal of Ecology and Rural Environment,2022,38(1):52-60. | |
[4] | CHEN W D, WEI J, ZHU K,et al.Predicting potential distribution of Emmenopterys henryi in Southwest China based on the MaxEnt model and influencing factors[J].Tropical Ecology,2022,63(4):572-583. |
[5] | CAI H W, ZHANG G F.Predicting the potential distribution of rare and endangered Emmenopterys henryi in China under climate change[J].Ecology and Evolution,2024,14(10):e70403. |
[6] | 李铁华,周佑勋,段小平,等.香果树种子休眠和萌发的生理特性[J].中南林学院学报,2004,24(2):82-84. |
LI T H, ZHOU Y X, DUAN X P,et al.Physiological characteristics of the dormancy and light-sensitive germination of Emmenopterys henyi seeds[J].Journal of Central South Forestry University,2004,24(2):82-84. | |
[7] | 陈茂光,郭连金,余诺祎,等.林下枯落物浸提液对香果树种子萌发及幼苗生长影响的化感效应[J].陕西林业科技,2019,47(4):1-7. |
CHEN M G, GUO L J, YU N Y,et al.Allelopathic effects of extracts from litters in forest on seed germination and seedling growth of Emmenopterys henryi [J].Shaanxi Forest Science and Technology,2019,47(4):1-7. | |
[8] | FENG Y Y, HAO Y F, CAI L J,et al.Influence of trehalose on photosynthesis in the rare and endangered Emmenopterys henryi Oliv.during heat stress and recovery process[J].Acta Physiologiae Plantarum,2022,44:8. |
[9] | HAO Y F, FENG Y Y, CAI L J,et al.Effect of ABA on photosynthesis and chlorophyll fluorescence in Emmenopterys henryi Oliv.under high light[J].Russian Journal of Plant Physiology,2021,68(3):510-518. |
[10] | 郭连金,曹昊玮,徐卫红,等.香果树(Emmenopterys henryi)种群种子雨、种子库及实生苗数量的海拔梯度变化[J].植物研究,2017,37(3):377-386. |
GUO L J, CAO H W, XU W H,et al.Seed rain,soil seed bank and quantitative dynamics of seedlings of Emmenopterys henryi populations in different altitude regions[J].Bulletin of Botanical Research,2017,37(3):377-386. | |
[11] | 康华靖,陈子林,刘鹏,等.大盘山自然保护区香果树种群结构与分布格局[J].生态学报,2007,27(1):389-396. |
KANG H J, CHEN Z L, LIU P,et al.The population structure and distribution pattern of Emmenopterys henryi in Dapanshan Natural Reserve of Zhejiang Province[J].Acta Ecologica Sinica,2007,27(1):389-396. | |
[12] | GUO L J, XUE P P, LI M,et al.Seed bank and regeneration dynamics of Emmenopterys henryi population on the western side of Wuyi Mountain,South China[J].Journal of Forestry Research,2017,28(5):943-952. |
[13] | 王雅寒,刘勋成.光调控植物种子萌发分子机制研究进展[J].热带亚热带植物学报,2024,32(2):294-300. |
WANG Y H, LIU X C.Research progress of the molecular mechanisms of light-regulated plant seed germination[J].Journal of Tropical and Subtropical Botany,2024,32(2):294-300. | |
[14] | 管康林.香果树种子的光萌发特性初步研究[J].浙江林学院学报,1985,2(2):47-50. |
GUAN K L.Study on the light demanding germination of the seed of Emmenopterys henryi Oliv.[J].Journal of Zhejiang Forestry College,1985,2(2):47-50. | |
[15] | 郑知临,曹红利,王鹏杰,等.茶树种子发育过程的转录组分析[J].西北植物学报,2019,39(9):1534-1542. |
ZHENG Z L, CAO H L, WANG P J,et al.Transcriptomics analysis of Camellia sinensis seed in three different development stages[J].Acta Botanica Boreali-Occidentalia Sinica,2019,39(9):1534-1542. | |
[16] | 闫宗圣,王乾,王蕾,等.白鲜种子休眠解除过程中的转录组分析[J].种子,2022,41(12):35-40. |
YAN Z S, WANG Q, WANG L,et al.Transcriptome analysis of dormancy release in Dictamnus dasycarpus Turcz.seeds[J].Seed,2022,41(12):35-40. | |
[17] | PAN C L, YAO L X, YU L Y,et al.Transcriptome and proteome analyses reveal the potential mechanism of seed dormancy release in Amomum tsaoko during warm stratification[J].BMC Genomics,2023,24:99. |
[18] | CHEN T T, CHEN X, ZHANG S S,et al.The genome sequence archive family:toward explosive data growth and diverse data types.Genomics Proteomics & Bioinformatics,2021,19(4):578-583. |
[19] | 冯玥,郭嘉,解增言.植物种子特异基因调控网络研究[J].基因组学与应用生物学,2021,40(3):1307-1315. |
FENG Y, GUO J, XIE Z Y.Study on regulatory network of seed-specific genes[J].Genomics and Applied Biology,2021,40(3):1307-1315. | |
[20] | 白雪,曹帅,向殿军,等.低温条件下蓖麻种子萌发期转录组分析[J].分子植物育种,2019,17(12):3834-3844. |
BAI X, CAO S, XIANG D J,et al.Transcriptome analysis of castor seeds at germination stage under low temperature[J].Molecular Plant Breeding,2019,17(12):3834-3844. | |
[21] | 索荣臻.大豆萌发期低温、渍水及联合胁迫的全基因组关联分析与候选基因挖掘[D].呼和浩特:内蒙古农业大学,2023. |
SUO R Z.Genome-wide association analysis and candidate gene associated with low temperature,waterlogging and combined stresses during soybean germination[D].Hohhot:Inner Mongolia Agricultural University,2023. | |
[22] | 牛晓雪,李保华,包艳存,等.不同采收期芦笋种子质量及转录组学分析[J/OL].分子植物育种.(2023-03-21)[2025-03-25].. |
NIU X X, LI B H, BAO Y C,et al.Study on seed quality and transcriptome analysis of Asparagus officinalis L.in different harvesting period[J/OL].Molecular Plant Breeding.(2023-03-21)[2025-03-25].. | |
[23] | JONES L R, HUNTS C A, DOLAN L A,et al.Effects of seed size and toucan regurgitation on the germination of the tropical tree Eugenia uniflora [J].Journal of Tropical Ecology,2023,39:e5. |
[24] | 杨期和,叶万辉,宋松泉,等.植物种子休眠的原因及休眠的多形性[J].西北植物学报,2003,23(5):837-843. |
YANG Q H, YE W H, SONG S Q,et al.Summarization on causes of seed dormancy and dormancy polymorphism[J].Acta Botanica Boreali-Occidentalia Sinica,2003,23(5):837-843. | |
[25] | GAI W X, YANG F,ALI M,et al.Pepper heat shock transcription factor A1d contributes to seed thermotolerance and germination vigor[J].Scientia Horticulturae,2023,311:111786. |
[26] | FENG K, HOU X L, XING G M,et al.Advances in AP2/ERF super-family transcription factors in plant[J].Critical Reviews in Biotechnology,2020,40(6):750-776. |
[27] | CHEN H Y, HSIEH E J, CHENG M C,et al.ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element[J].New Phytologist,2016,211(2):599-613. |
[28] | RAJJOU I, DUVAL M, GALLARDO K,et al.Seed germination and vigor[J].Annual Review of Plant Biology,2012,63(1):507-533. |
[29] | 曲春浦,张国壁,左壮,等.杨树种子萌发中内肽酶变化及其相关途径基因的表达模式[J].贵州农业科学,2018,46(9):1-6. |
QU C P, ZHANG G B, ZUO Z,et al.Change of endopeptidase and expression pattern of related pathway genes during germination of poplar seeds[J].Guizhou Agricultural Sciences,2018,46(9):1-6. | |
[30] | 王庆吉延,李金,李田,等.‘燕山红栗’雌花不同发育阶段解剖结构及细胞壁成分变化[J].植物研究,2024,44(5):670-680. |
WANG Q J Y, LI J, LI T,et al.Anatomical structure and cell wall components changes in Chestnut ‘Yanshan Hongli’ female flowers at developmental stages[J].Bulletin of Botanical Research,2024,44(5):670-680. | |
[31] | SANGI S, SANTOS M L C, ALEXANDRINO C R,et al.Cell wall dynamics and gene expression on soybean embryonic axes during germination[J].Planta,2019,250(4):1325-1337. |
[32] | 梅晓宏,陈燕卉,高红岩,等.果胶甲酯酶抑制剂的研究进展[J].食品科技,2008(6):64-68. |
MEI X H, CHEN Y H, GAO H Y,et al.Development of pectin methylesterase inhibitor[J].Food Science and Technology,2008(6):64-68. | |
[33] | SANTI L, BEYS-DA-SILVA W O, BERGER M,et al. Penicillium oxalicum secretomic analysis identify plant cell wall degrading enzymes important for fruit juice extraction[J].Journal of Food Science,2021,58(5):1764-1775. |
[34] | ZHANG X, TANG H M, DU H,et al.Comparative N-glycoproteome analysis provides novel insights into the regulation mechanism in tomato (Solanum lycopersicum L.) during fruit ripening process[J].Plant Science,2020,293:110413. |
[35] | SHARMIN R A, BHUIYAN M R, LV W H,et al.RNA-Seq based transcriptomic analysis revealed genes associated with seed-flooding tolerance in wild soybean (Glycine soja Sieb.& Zucc.)[J].Environmental and Experimental Botany,2020,171:103906. |
[36] | 陆沁怡,沈永宝,史锋厚.芍药种胚发育及物质代谢的探究[J/OL].分子植物育种.(2022-05-18)[2023-10-13].. |
LU Q Y, SHEN Y B, SHI F H.Study on embryo development and material metabolism of Paeonia lactiflora Pall.[J/OL].Molecular Plant Breeding.(2022-05-18)[2023-10-13].. | |
[37] | 罗丽娜,向增旭.基于转录组测序分析的黄精种子休眠解除相关差异基因研究[J].中国农学通报,2021,37(11):1-8. |
LUO L N, XIANG Z X.The relative difference genes in the process of dormancy release of Polygonatum sibiricum Red.based on the transcriptome sequencing analysis[J].Chinese Agricultural Science Bulletin,2021,37(11):1-8. | |
[38] | 张焕欣,董春娟,尚庆茂.辣椒下胚轴不定根发生相关差异表达基因分析[J].植物生理学报,2017,53(8):1553-1568. |
ZHANG H X, DONG C J, SHANG Q M.Differential expression analysis of genes involved in adventitious rooting from pepper (Capsicum annuum) hypocotyl cuttings[J].Plant Physiology Journal,2017,53(8):1553-1568. | |
[39] | 庄卉卉.黄花棘豆响应非生物胁迫转录组分析及干旱胁迫信号通路的研究[D].西安:西北大学,2016. |
ZHUANG H H.Analysis of Oxytropis ochrocephala Bunge transcriptome in response to abiotic stresses and the signaling pathway involved in drought[D].Xi'an:Northwest University,2016. | |
[40] | OSPINA K R, BRIONES O, PÉREZ-GARCÍA B.Spore germination of three tree fern species in response to light,water potential,and canopy openness[J].American Fern Journal,2015,105(2):59-72. |
[1] | 王喆, 李明月, 朱美如, 张鹏. 不同初生休眠类型林木种子适宜萌发温度及其对热休眠诱导的响应[J]. 植物研究, 2025, 45(4): 569-579. |
[2] | 春建惠, 董文龙, 屠元超, 刘芳, 徐云剑. 玉米GLP家族基因鉴定及其响应丛枝菌根共生表达[J]. 植物研究, 2025, 45(3): 406-418. |
[3] | 梅曼, 王晨璨, 蔺宏霞, 张玉倩, 丁文静, 赵媛媛. 空间转录组技术在植物研究中的应用及前景[J]. 植物研究, 2025, 45(1): 3-14. |
[4] | 刘婷, 李明月, 朱美如, 辛昊, 董博文, 张鹏. 不同水曲柳无性系种子休眠差异[J]. 植物研究, 2024, 44(5): 711-720. |
[5] | 靳旭红, 于聪, 张庭耀, 吕松瞳, 刘扬, 陈乐, 龙生, 穆怀志. 基于种子活力和苗期生长的枫桦半同胞家系初选[J]. 植物研究, 2024, 44(5): 763-773. |
[6] | 任艳君, 郭晓瑞, 于子煊, 吴可心, 孙宇, 陈宁, 油乔木, 邢凯鑫. 变温层积不同阶段刺五加种子萌发生理及代谢特点[J]. 植物研究, 2024, 44(4): 576-589. |
[7] | 唐双龙, 陈时鑫, 王煜, 马丹炜, 杨世辉, 聂申明, 扎西泽里, 田正友. 中国特有种大理白前对高寒环境的形态适应特征[J]. 植物研究, 2024, 44(3): 389-399. |
[8] | 管岳, 申文靖, 宋晓萌, 王妍欣, 阿克居力得孜·努尔改里得, 陈鹏飞, 周龙. 巴尔鲁克山野扁桃种子萌发特性[J]. 植物研究, 2024, 44(3): 400-409. |
[9] | 王仁睿, 刘鑫, 李杰. 濒危植物春剑的胚胎发育及果实和种子特征研究[J]. 植物研究, 2023, 43(6): 953-960. |
[10] | 王丹, 张中帅, 曾庆银, 韩学敏. 滇西北冷杉属植物结实特性及种子特征研究[J]. 植物研究, 2023, 43(5): 647-656. |
[11] | 吴友贵, 朱志成, 吴倩倩, 蔡焕满, 陈定云. 极危植物百山祖冷杉的种子雨[J]. 植物研究, 2023, 43(5): 711-719. |
[12] | 倪馨宇, 贺俊英, 燕孟娇, 杜超. RNA-Seq技术在珍稀濒危植物研究中的应用进展[J]. 植物研究, 2023, 43(4): 481-492. |
[13] | 郑占敏, 商玉冰, 周广波, 肖迪, 刘轶, 由香玲. PsnHB13与PsnHB15在小黑杨中的遗传转化与功能分析[J]. 植物研究, 2023, 43(3): 340-350. |
[14] | 矫春晶, 李明月, 张鹏. 外源激素浸种与渗透处理对水曲柳种子热休眠的作用[J]. 植物研究, 2023, 43(3): 370-378. |
[15] | 久西加, 王玉辉, 陈红刚, 王惠珍, 曾翠云, 杜弢. 基于熵权TOPSIS模型的桃儿七种子超低温保存条件筛选[J]. 植物研究, 2023, 43(3): 404-411. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||